Contoh Soal Sistem Katrol Pada Bidang Datar Garang Dan Jawabannya Lengkap
Sebelumnya kita sudah membahas beberapa pola soal dan pembahasan mengenai sistem katrol pada bidang datar licin, nah pada kesempatan kali ini kita akan membahas wacana pola soal sistem katrol pada bidang datar kasar. Seperti biasa, sebelum masuk ke pola soal, kita pahami uraian singkat wacana aturan Newton dan gaya gesek berikut ini.
Konsep Hukum Newton
Hukum I Newton | Hukum II Newton | Hukum III Newton |
ΣF = 0 | ΣF = ma | Faksi = −Freaksi |
Keadaan benda: ∎ diam (v = 0 m/s) ∎ bergerak lurus beraturan atau GLB (v = konstan) | Keadaan benda: ∎ benda bergerak lurus berubah beraturan atau GLBB (v ≠ konstan) | Sifat gaya agresi reaksi: ∎ sama besar ∎ berlawanan arah ∎ terjadi pada 2 objek berbeda |
Konsep Gaya Gesek
Gaya Gesek Statis | Gaya Gesek Kinetis |
fs = μs N | fk = μk N |
Bekerja pada benda: ∎ diam (v = 0 m/s) ∎ tepat akan bergerak (fs maksimum) | Bekerja pada benda: ∎ bergerak (baik GLB maupun GLBB) |
Hubungan Gaya Gesek dan Gerak Benda
Besar Gaya Luar | Keadaan Benda |
Jika F < fs maksimum | Diam, berlaku Hukum I Newton |
Jika F > fs maksimum | Bergerak, berlaku Hukum II Newton dan bekerja gaya gesek kinetik (fk) |
Baiklah, jikalau kalian sudah memahami konsep Hukum Newton dan gaya gesek, sekarang saatnya kita bahas beberapa pola soal wacana sistem katrol pada bidang datar kasar. Silahkan kalian simak baik-baik klarifikasi berikut ini. Selamat mencar ilmu dan agar sanggup paham.
1. Balok A yang bermassa 3 kg diletakkan di atas meja kemudian diikat tali yang menghubungkan balok B dengan massa 2 kg melalui sebuah katrol menyerupai yang diperlihatkan pada gambar di bawah ini. Massa dan tabrakan katrol diabaikan sedangkan percepatan gravitasi g = 10 m/s2. Tentukanlah besar percepatan sistem dan tegangan tali jikalau meja agresif dengan koefisien gesek kinetik μk = 0,4
Penyelesaian:
Diketahui:
mA = 3 kg
mB = 2 kg
g = 10 m/s2
μk = 0,4
Ditanyakan: Percepatan dan gaya tegangan tali.
Jawab:
Untuk kondisi meja kasar, maka terdapat gaya gesek yang bekerja pada balok A sehinga kita perlu mengguraikan resultan gaya pada sumbu-Y untuk balok A. Untuk menentuan resultan gaya pada masing-masing balok, kita sanggup memakai Hukum II Newton yaitu sebagai berikut.
Tinjau Balok A
ΣFY = ma
N – wA = mAa
N – mAg = mAa
Karena tidak terjadi gerak dalam arah vertikal, maka a = 0 sehingga
N – mAg = 0
N = mAg
ΣFX = ma
T – f = mAa
T – μkN = mAa
T – μkmAg = mAa
T = mAa + μkmAg …………… Pers. (1)
Tinjau Balok B
ΣFY = ma
wB – T = mBa
mBg – T = mBa …………… Pers. (2)
Subtitusikan persamaan (1) ke persamaan (2)
mBg – (mAa + μkmAg) = mBa
mAa + mBa = mBg – μkmAg
(mA + mB)a = (mB – μkmA)g
a = (mB – μkmA)g/(mA + mB) …………… Pers. (3)
Masukkan nilai-nilai yang diketahui dalam soal ke persamaan (3)
a = [2 – (0,4)(3)]10/(3 + 2)
a = 8/5
a = 1,6 m/s2
Jadi besar percepatan sistem untuk keadaan meja agresif yaitu 1,6 m/s2. Untuk memilih besar gaya tegangan tali, kita masukkan nilai percepatan ke persamaan (1) sebagai berikut.
T = mAa + μkmAg
T = (3)(1,6) + (0,4)(3)(10)
T = 4,8 + 12
T = 16,8 N
Jadi besar gaya tegangan tali untuk kondisi meja agresif yaitu 16,8 N.
2. Benda 1 bermassa m1 = 3 kg dan benda 2 bermassa m2 = 2 kg. Benda 2 mula-mula membisu kemudian bergerak ke bawah sehingga menyentuh lantai yang jaraknya s dari benda 2. Meja agresif dengan koefisien gesek kinetis 0,25, percepatan gravitasi g = 10 m/s2 dan s = 5 m, maka tentukanlah waktu yang diharapkan benda 2 untuk menyentuh lantai.
Penyelesaian:
Diketahui:
m1 = 3 kg
m2 = 2 kg
μk = 0,25
g = 10 m/s2
s = 5 m
Ditanyakan: Waktu mencapai lantai.
Jawab:
Untuk mengetahui waktu yang diharapkan benda 2 untuk menyentuh lantai, maka besaran pertama yang harus kita tentukan yaitu percepatan. Namun sebelum itu, kita gambarkan diagram gaya yang bekerja pada sistem menyerupai yang ditunjukkan oleh gambar berikut ini.
Dari gambar diagram gaya di atas, kita tentukan resultan gaya dengan meninjau gerak masing-masing benda memakai Hukum II Newton sebagai berikut.
Tinjau Benda 1
ΣFY = ma
N – w1 = m1a
N – m1g = m1a
Karena tidak terjadi gerak dalam arah vertikal, maka a = 0 sehingga
N – m1g = 0
N = m1g
ΣFX = ma
T – f = m1a
T – μkN = m1a
T – μkm1g = m1a
T = m1a + μkm1g …………… Pers. (1)
Tinjau Benda 2
ΣFY = ma
w2 – T = m2a
m2g – T = m2a …………… Pers. (2)
Subtitusikan persamaan (1) ke persamaan (2)
m2g – (m1a + μkm1g) = m2a
m1a + m2a = m2g – μkm1g
(m1 + m2)a = (m2 – μkm1)g
a = (m2 – μkm1)g/(m1 + m2) …………… Pers. (3)
Masukkan nilai-nilai yang diketahui dalam soal ke persamaan (3)
a = [2 – (0,25)(3)]10/(3 + 2)
a = (2 – 0,75)10/5
a = 12.5/5
a = 2,5 m/s2
Jadi besar percepatan kedua benda yaitu 1,6 m/s2. Kemudian dalam memilih waktu yang diharapkan benda 2 untuk menyentuh tanah, kita sanggup gunakan rumus jarak pada gerak lurus berubah beraturan (GLBB) sebagai berikut.
s = v0t + ½ at2
Karena benda 2 mula-mula diam, maka tidak ada kecepatan awal sehingga v0 = 0. Makara rumus di atas menjadi.
s = ½ at2
t2 = 2s/a
t = √(2s/a)
Kita masukkan harga percepatan dan nilai-nilai yang diketahui dalam soal ke dalam rumus di atas sehingga kita peroleh
t = √[2(5)/2,5]
t = √(10/2,5)
t = √4
t = 2 s
Dengan demikian, waktu yang diharapkan benda 2 untuk menyentuh tanah yaitu 2 detik.
3. Dua balok yaitu balok m1 dan balok m2 dihubungkan dengan seutas tali melalui dua katrol. Balok m1 terletak pada bidang datar dan dihubungkan pada katrol tetap sedangkan balok m2 dihubungkan pada katrol bebas bergerak menyerupai yang diperlihatkan pada gambar di bawah ini.
Pada rangkaian menyerupai pada gambar di atas, massa balok 1 dan 2 masing-masing yaitu 3 kg dan 4 kg. Kedua katrol licin serta massa tali dan katrol diabaikan (g = 10 m/s2). Tentukanlah percepatan masing-masing balok dan gaya tegangan tali sistem apabila bidang datar agresif dengan koefisien gesek kinetis 0,25
Penyelesaian
Diketahui:
m1 = 3 kg
m2 = 4 kg
μk = 0,25 (bidang kasar)
g = 10 m/s2
Ditanyakan: Percepatan dan gaya tegangan tali
Jawab:
Sebelum sanggup memilih resultan gaya baik pada balok 1 maupun balok 2, tentunya kita harus menggambarkan diagram gaya yang bekerja pada sistem terlebih dahulu. Perhatikan gambar berikut ini.
Tinjau Balok 1
ΣFY = ma
N – w1 = m1a1
N – m1g = m1a1
Karena tidak terjadi gerak dalam arah sumbu-Y, maka a = 0 sehingga
N – m1g = 0
N = m1g
ΣFX = ma
T – f = m1a1
T – μkN = m1a1
Karena N = m1g maka
T – μkm1g = m1a1
T = m1a1 + μkm1g …………… Pers. (1)
Tinjau Balok 2
ΣFY = ma
w2 – 2T = m2a2
m2g – 2T = m2a2 …………… Pers. (2)
Subtitusikan persamaan (1) ke dalam persamaan (2)
m2g – 2(m1a1 + μkm1g) = m2a2
2m1a1 + m2a2 = m2g – 2μkm1g
Karena a1 = 2a2 maka
2m1(2a2) + m2a2 = m2g – 2μkm1g
4m1a2 + m2a2 = m2g – 2μkm1g
(4m1 + m2)a2 = (m2 – 2μkm1)g
a2 = (m2 – 2μkm1)g/(4m1 + m2) …………… Pers. (3)
Masukkan nilai-nilai yang diketahui dalam soal ke persamaan (3)
a2 = [4 – 2(0,25)(3)]10/[4(3) + 4]
a2 = (4 – 1,5)10/(12 + 4)
a2 = (2,5)10/16
a2 = 1,56 m/s2
Karena a2 = 1,56 maka a1 = 2 × 1,56 = 3,12 m/s2
Jadi, Untuk kondisi bidang datar kasar, besar percepatan balok 1 yaitu 3,12 m/s2 sedangkan besar percepatan balok 2 yaitu 1,56 m/s2. Untuk memilih besar gaya tegangan tali sistem, maka kita sanggup memasukkan nilai a1 ke persamaan (1) atau memasukkan nilai a2 ke persamaan (2).
T = m1a1 + μkm1g
T = (4)(3,12) + (0,25)(4)(10)
T = 12,48 + 10
T = 22,48 N
Dengan demikian, besar gaya tegangan tali sistem apabila bidang datar agresif yaitu 22,48 Newton.
4. Tiga balok bermassa m1, m2 dan m3 dihubungkan dengan tali-tali melalui dua buah katrol. Balok m1 dan m3 dalam keadaan menggantung sedangkan balok m2 berada di atas bidang datar menyerupai yang diperlihatkan pada gambar berikut ini.
Pada rangkaian di atas, massa balok 1, 2 dan 3 berturut-turut yaitu 1 kg, 3 kg dan 6 kg dan percepatan gravitasi bumi di kawasan itu yaitu 10 m/s2. Kondisi dua katrol yaitu licin serta massanya diabaikan. Tentukanlah percepatan ketiga balok, tegangan tali antara balok 1 dan 2 serta tegangan tali antara balok 2 dan 3 apabila bidang datar agresif dengan koefisien gesek sebesar 0,2.
Penyelesaian
Diketahui:
m1 = 1 kg
m2 = 3 kg
m3 = 6 kg
g = 10 m/s2
μ = 0,2 (bidang datar kasar)
Ditanyakan: Percepatan dan gaya tegangan tali
Jawab:
Untuk kondisi datar kasar, maka laju balok akan terhambat oleh gaya gesek sehingga percepatannya menjadi lebih kecil sedangkan gaya tegangan tali antara balok 2 dan balok 3 menjadi lebih besar. Untuk memilih percepatan ketiga balok, kita gambarkan terlebih dahulu diagram gaya sistem menyerupai yang diperlihatkan pada gambar di bawah ini.
Berdasarkan gambar diagram gaya di atas, maka resultan gaya pada masing-masing balok sanggup kita tentukan dengan memakai Hukum Newton sebagai berikut.
Tinjau Balok 1
ΣFY = ma
T1 – w1 = m1a
T1 – m1g = m1a
T1 = m1a + m1g ............... Pers. (1)
Tinjau Balok 2
ΣFY = ma
N2 – w2 = m2a
Karena tidak ada gerak pada sumbu-Y (arah vertikal) maka a = 0, sehingga
N2 – w2 = 0
N2 = w2
N2 = m2g
ΣFX = ma
T2 – f – T1 = m2a
T2 – μN2 – T1 = m2a
T2 – μm2g – T1 = m2a ............... Pers. (2)
Subtitusikan persamaan (1) ke persamaan (2)
T2 – μm2g – (m1a + m1g) = m2a
T2 = m1a + m2a + m1g + μm2g ............... Pers. (3)
Tinjau Balok 3
ΣFY = ma
w3 – T2 = m3a
m3g – T2 = m3a ............... Pers. (4)
Subtitusikan persamaan (3) ke persamaan (4)
m3g – (m1a + m2a + m1g + μm2g) = m3a
m1a + m2a + m3a = m3g – m1g – μm2g
(m1 + m2 + m3)a = (m3 – m1 – μm2)g
a = (m3 – m1 – μm2)g/(m1 + m2 + m3) ............... Pers. (5)
Masukkan nilai-nilai yang diketahui dalam soal ke persamaan (5).
a = [6 – 1 – (0,2)(3)]10/(1 + 3 + 6)
a = (5 – 0,6)10/10
a = 4,4 m/s2
Jadi, besar percepatan ketiga balok pada kondisi bidang datar licin yaitu 4,4 m/s2. Untuk memilih besar gaya tegangan tali antara balok 1 dan balok 2, masukkan nilai percepatan ke persamaan (1). Sedangkan untuk memilih gaya tegangan tali antara balok 2 dan balok 3, masukkan nilai percepatan ke persamaan (4).
Tegangan Tali antara Balok 1 dengan Balok 2
T1 = m1a + m1g
T1 = (1)(4,4) + (1)(10)
T1 = 4,4 + 10
T1 = 14,4 N
Jadi, besar gaya tegangan tali antara balok 1 dengan balok 2 yaitu 14,4 Newton.
Tegangan Tali antara Balok 2 dengan Balok 3
m3g – T2 = m3a
(6)(10) – T2 = (6)(4,4)
60 – T2 = 26,4
T2 = 60 – 26,4
T2 = 33,6 N
Jadi, besar gaya tegangan tali antara balok 2 dengan balok 3 yaitu 33,6 Newton.